
JOURNAL OF COMPUTATIONAL PHYSICS 41, 329-356 (1981) 

On a Fourth Order Accurate implicit Finite 
Difference Scheme for Hyperbolic Conservation Laws. 

II. Five-Point Schemes* 

A. HARTEN AND H. TAL-EZER 

Department of Mathematics, Tel-Aviv University, Tel-Aviv, Israel 

Received July 9, 1979 

This paper presents a family of two-level five-point implicit schemes for the solution of one- 
dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson 
scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are 
nondissipative and unconditionally stable. Special attention is given to the system of linear 
equations associated with these 44 implicit schemes. The regularity of this system is 
analyzed and efficiency of solution-algorithms is examined. A two-datum representation of 
these 44 implicit schemes brings about a compactification of the stencil to three mesh points 
at each time-level. This compact two-datum representation is particularly useful in deriving 
boundary treatments. Numerical results are presented to illustrate some properties of the 
proposed scheme. 

1. INTRODUCTION 

We consider here numerical solutions of a one-dimensional system of conservation 
laws 

w, +f( w), = 0. (1.1) 

where w(x, I) is an m-vector of unknowns andf(w) is a vector valued function of m 
components. The system (1.1) is said to be (strictly) hyperbolic when all eigenvalues 
a,(w),..., a,(w) of the Jacobian matrix 

A(w) = grad,f (1.2) 

are real and distinct; the eigenvalues ak(w) are also referred to as characteristic 
speeds. Throughout this paper we denote by UT = @lx, tit) a discrete approx- 
imation to solutions w(x, t) of (l.l), where Ax and At are the space and time 
increments, respectively. We denote the CFL (Courant-Friedrichs-Lewy) number by 
IVI 

(1.3) 
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The CFL number, which is the ratio of the maximal characteristic speed to the speed 
Ax/At of the numerical mesh, is an important parameter in the numerical solution of 
hyperbolic problems. 

This paper is a condensed version of the ICASE report [4] and is a sequel to [5], 
in which we have introduced a generalization of the Crank-Nicholson scheme to 
fourth order accuracy (in both time and space). In Section 2 we repeat the derivation 
of this scheme, which we denote by CN44: it is an implicit, unconditionally stable, 
nondissipative, two-leval three-point scheme (i.e., it uses three spatial mesh points at 
each level). 

In Section 3 we analyze the solvability of the system of linear equations associated 
with three-point implicit schemes. We show that the system of linear equations 
associated with CN44 may become singular for 1 v ( > 1. Consequently, CN44 can be 
applied only under the CFL restriction Iv1 < 1. In [5] we have also introduced a 
dissipative version of CN44 which is conditionally stable for 1 v 1 < 1. This dissipative 
version is particularly useful for numerical solutions of problems with strong but 
nonstiff dynamic features. 

The singularity of the algebraic system associated with CN44 is due to its compact 
spatial discretization, which allows a mesh-oscillation eigenvector with a zero eigen- 
value. This singularity can be overcome by enlarging the stencil of the 4-4 scheme to 
live spatial mesh points at each time-level (i.e., five-point schemes). In Section 4 we 
study a two-parameter family of live-point schemes and choose values of the 
parameters so that the pentadiagonal matrix associated with the scheme is 
nonsingular for all CFL numbers. We denote this scheme by FP44. 

In Section 5 we describe an iterative technique for the solution of the system of 
linear equations associated with FP44. This iterative technique is more efficient than 
Gaussian elimination for ( v I ( 4 and has the practical advantage of easy implemen- 
tation in a 2-4 Crank-Nicholson computer code. In Section 6 we study a two-datum 
representation of FP44 which results in a block tridiagonal system of linear 
equations. In Sections 7 and 8 we present some numerical results to demonstrate the 
performance of FP44. 

We refer the reader who is interested in more background material to [5] and the 
references cited therein. 

2. NUMERICAL BACKGROUND 

One constructs an implicit Crank-Nicholson-type scheme for the solution of 
w1 +f(w), = 0 by replacing the integral in the relation 

I 
f+Af 

W n+lEW”+ w, dt 
f 

(2.1) 

with a trapezoidal rule, i.e., 
At 

W n+’ = w” + - (w; + WY+‘) + O((At)3) 
2 
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and then substituting w, = -f, to obtain 

W n+1 +$f:“= w” - qf: + O((Aq3). (2.2) 

To introduce spatial discretization we make use of the following finite difference 
operators: 

(2.3a) 

A, 1 ;;‘,6f =fx + O@w4) (2.3b) 

where ,u and 6 are the commonly used operators 

/, = f(7’/* + T-l/*) 9 6 = T’/* _ T- 112. 3 

T is the translation operator, Pu(x) = v(x + adx). Approximating f, in (2.2) by 
(2.3a) and (2.3b) we obtain 

(1 +a2/6)v~+‘+~~bf”t’=(1 t6*/6)u”-+f”, (2.4b) 

respectively; here 1= At/Ax and f’ =f(t~‘). 
One may linearize the schemes in (2.4) by expanding f”” around v” in the 

following way (see [ 11) 

f fl+‘=f”tA”(v”+‘-u”)+O((dt)*). (2.5) 

Denoting dv” = untl - ZI” we rewrite the linearized schemes in (2.4) in the 
computationally convenient d-formulation of Beam and Warming [2], (2.4a) and 
(2.4b) become, respectively 

CN22: 
( 
1 + +V Au" = -&udf”, 

1 
(2.6a) 

CN24: 
( 
1 + 62/6t+ 

1 
Au" = -13,&f n. (2.6b) 

Both schemes in (2.6) are unconditionally stable, nondissipative and second order 
accurate in the time variable. The scheme (2.6a), which we denote by CN22 is also 
second order in the space variable. The scheme (2.6b) is fourth order in the space 
variable and shall be referred to as CN24. Both schemes use a centered stencil of six 
points: three at level n and three at level II + 1. 
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In the first installment of this series we have described a fourth order accurate (in 
both space and time) generalization of the Crank-Nicholson scheme. This scheme, 
which we denote by CN44, can be easily derived from discretizing the integral in 
(2.1) by a trapezoidal rule with end corrections (see 13, p. 1051) 

Lit 
W n+‘=w”+T(w;+W:+‘)+ e!$ (w;t - w:(+ ‘) + O((dq5) (2.7a) 

and then substituting w, = -f,, w,, = (Af,), from the partial differential equation 
(1.1) 

(2.7b) 

To obtain fourth order accuracy in space we approximatef, by (2.3~) and (Af,), by 

Thus (2.7b) becomes 

MfJx = (dx)2 -!- 6A6f+ o((dx)*). (2.7~) 

To linearize the scheme (2.8) and still preserve its temporal fourth order accuracy, 
we first obtain a second order accurate approximation v^ to the solution of (1.1) at 
level n + 1 

u^ = u”+ l + O((d@). 

Then we expand f nt ’ and A”+ ’ around v^ in the following way 

f mt 1 =f+ A(zP - 6) + 0(/l ?Y+ l - fill’) =J+ Adu” + O((dq6), 

A Ia+ 1 = a + O((Lq3), 

where A = A(6), p= f (z?), and $denotes 

3=3+ A@” - 6) 

(2.9a) 

(2.9b) 

(2.9~) 

(2.9d) 
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and as before Au” = vnt ’ - v”. Using this linearization we obtain the following A- 
form 

CN44: 
( 
1 +a216 +$A +$&&A Au” 

) 

= - &qf” +3) + g S(A "df" - 43). 
(2.10) 

In the constant coefficient case 

(2.11) w,+Aw,=O, A = constant 

CN44 becomes 
2 

1 + J2/6 + ; Ap6 + &A 2d2 Av” = -kA,u&f’, (2.12) 

which is nondissipative and unconditionally stable; thus the linear stability of CN44 
does not depend on the way v^ in (2.9a) is calculated. (2.12) has the same centered 
stencil of three points at level n and three points at level n + 1 as CN22 and CN24. 
As this is the smallest stencil possible to obtain 4-4 accuracy we shall also refer to 
CN44 as a compact 4-4 scheme. 

3. SOLVABILITY AND DIRECT FACTORIZATION 

The implicit schemes of Section 2 can be written in the form 

Qv n+1 zz Ry”, (3,la) 

where Q and R are finite difference operators with a support of three points. 

(QV)j = bjvj- 1 + aj vj + Cjvj+ 13 (3.lb) 

(Rv),=~~v~-, +cijVj+~jVj+,. (3.lc) 

Throughout this paper we assume that the mesh points 1 (j (N are interior points 
and that j = 0 and j = N + 1 are boundary points. The finite difference operator Q is 
represented by a matrix Qi,j, which is block tridiagonal except for boundary terms. 
For periodic boundary conditions we have v; G vi, vfy+, = vi for I > 0, thus 

I 

a1 4 
Q= 

Cl 

bi 
0 

a, 

0 

ci 

bN 

4 

CN- 

aN 

1. (3.ld) 
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We analyze now the scalar constant coefficient case where bj s b, cj E c, aj z a. 

CN22: b-$, a= 1, CL 
4’ 

CN24: b = & (2 - 3v), 
2 

a=--, 
3 

c = + (2 + 3v), (3.2b) 

CN44: b = & (2 - 3v + v*), a = $ (4 - v2), 

6= c, a^ = a, t= b. 

c = + (2 + 3v + v2), 
(3.2~) 
(3.2d) 

It is easy to see that the matrix Q in (3.ld) is diagonally dominant (i.e., 
]a] > (bl + ]c]) if and only if 

CN22: IVI < 2, (3.3a) 

CN24: /VI < 4, (3.3b) 

CN44: IV < 1. (3.3c) 

A diagonal dominant matrix Q is invertible and can be factored without pivoting 
into a product of a lower triangular matrix L and an upper triangular matrix U, i.e., 
Q = LU (see [8, pp. 55-611). However, diagonal dominance is only a sufficient 
condition for regularity of Q and direct LU factorization. 

To analyze regularity let us evaluate the eigenvalues of Q. For simplicity let us 
assume --71 <x < rr, Ax = 27r/N, xi = --x + jdx, and we want to solve for vj, 
1 <j < N. The mesh function 

(v(~‘}~ = e ikjdx = e(i2rc!dN)j l<j<N 

is an eigenvector of Q for all 1 < k <N. 

Qdk’ = (be-‘l + a + ceil) uck) s qk(<) uck), (3.4) 

where < = kAx = 2nk/N. The eigenvalues qk(r) are given by 

CN22: qk(<) = 1 + if sin c$, (3.5a) 

CN24: 
2 r qk(<) = 1 - -3- sin2 T + i + sin {, (3Sb) 

CN44: qk(c)= I --f(Z+v’)sin’++i+sin& (3.5c) 
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It follows that Q for CN22 and CN24 is always regular; however, for CN44, 
qk(tJ = 0 for c = Z, 1 V] = 1. Thus, in the periodic case with even N, ujN12)= eini = (- 1 y’ 
is an eigenvector with a zero eigenvalue and Q is singular. 

In [4, Appendix A] the stability of a direct LU factorization without pivoting for 
Crank-Nicholson type schemes is analyzed in the scalar constant coefficient case. It 
is shown there that the coefficient matrix of CN22 and CN24 can always be factored 
without pivoting and the solution algorithm is always stable (see also [9]). Although 
it is possible to factor CN44 for all IV/ < 2, it yields a stable solution algorithm only 
for IV1 < 1. 

We remark that in the periodic case, R, the operator on the RHS of (3.la) is the 
adjoint of Q, i.e., R = Q* and r,(r) = q,J<). Therefore, the singularity in CN44 can be 
“removed” by using a generalized inverse in solving the linear system associated with 
CN44. Numerical experiments, not reported in this paper, seem to confirm this obser- 
vation. 

In the next section we show how to remove this mesh oscillation singularity by 
enlarging the stencil of CN44 to five spatial mesh points. 

4. FIVE-POINT SCHEMES 

We consider the following two-parameter family of 4-4 schemes in the constant 
coefficient case 

Since ,B’ = 1 + $a*, we can rewrite (4.1) as 

K 
2 1 + a2/(j + +a + + 6* 4 + (a + /?v2) $ 1 Ad’ = -W~V”. 

Thus (4.1) with a = p = 0 is CN44; since d4Av” = O(AC(AX)~), (4.1) has 4-4 
accuracy for all a and /?. The Fourier symbol of (4.1) is 

1 -fY(2+v’)+fY2(a+/3r2)+i+sin< (S- 1)=-ivsinr, 1 
where <= kdx, 0 < t < 71, Y= sin*(</2), and S is the amplification factor of (4.1). 
The eigenvalues of the coefficient matrix Q are therefore 

1 1 
q(t, V) = 1 - -j- Y(2 + v’) + -j- Y2(a + /3v’) + i + sin <. (4.2) 
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The imaginary part of q vanishes at < = 0 and 6 = n (Y = 0, Y = l), but q(0, v) = 1, 
and 

q(n, v) = 4(1 + a) + $(jI - 1) 9. 

Hence, the condition 

a > -1, /1>1 

ensures regularity of the coefficient matrix. It is easily seen that 

Id<, VII> 4 min(L 1 + a), a > -1. 

The amplification factor S of (4.1) is given by 

(4.3a) 

(4.3b) 

(4.3c) 

(4.4a) 

thus, 

where 

ISI = 1, s = e-i6(d,u), (4.4b) 

d(& v) = 2 tan-’ 
[ 

(v/2) sin r 1 l-~Y(2+V2)+$Y2(a+~v2) * 
(4.4c) 

Hence, (4.1) is unconditionally stable for all choices of a and /3. $(r, v) is the 
numerical phase shift induced by (4.1) in a time-step At for an eikx wave. The exact 
phase shift induced by the solution operator of the differential equation in a At is 
#E = kAAt = v& Expanding $ - tiE in a Taylor series for small r we get 

~-,,+& [v4 + 5v73p - 1) + 4 + 15a] + O(<‘). (4.5) 

We observe that for the compact CN44, a = p = 0, we get 

v(v2 - 4)(v2 - 1) + O(l’) (4.6a) 

and indeed 4 = dE for ) v) = 1 and 1 v / = 2. However, to guarantee solvability we have 
a > -1, pa 1, and therefore 

l#-hl >$(v’- l)l(v’+6)+0(~‘), (4.6b) 

which is always less accurate than (4.6a). In order to prevent ill-conditioning of the 
coefficient matrix one should not choose a too close to -1. We elect to choose a = 0, 
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/3 = 1 because of its computational simplicity. In this case (q(<, v)] > 5 and the phase 
error is 

Q-h= & v(v4 + lo? + 4) + o(r’). 
(4.6~) 

The pentadiagonal coefficient matrix of (4.1) with a = 0, p = 1 is diagonally 
dominant for ] v] < -3 + fi z 1.123. We remark that one can enlarge the domain 
of diagonal dominance by taking larger values of a and p but at the expense of 
increasing the phase error. Our numerical experiments indicate that a direct LU 
factorization without pivoting is possible for much larger values of CFL number. 

Now we describe the proposed five-point scheme for nonlinear conservation laws: 

As in (2.9) we linearize this scheme around a second order accurate approximation b 
to vn+l, and obtain 

2 

(4.7b) 

where Au” = v”+ ’ - v”. We denote this scheme by FP44. 
We observe that FP44 differs from the compact CN44 only in the spatial 

discretization of the term (Af,),. This modification removes the singularity due to the 
mesh oscillation eigenvector, thus allowing the use of larger time steps. The 
computational effort in setting up the matrix equation is the same. In [5] we have 
shown that one flux function f and one matrix function A have to be computed per 
mesh point per time step. However, pentadiagonal factorization is about 2.8 times 
more expensive than tridiagonal factorization (N% 1). 

We see that the singularity in the coefficient matrix of CN44 can be removed at 
the cost of using a five-point scheme FP44. This involves not only more arithmetic 
operations but also an added complication in handling boundaries. We remark that 
FP44 can be generalized in a straightforward way to approximate the viscous 
equation 

Wf +.f(w>, = aw,, (4.8) 

to fourth order accuracy. In this case five mesh points at each time level is the 
minimal number of points needed to achieve 4-4 accuracy. 
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In the next section we shall describe an iterative algorithm for FP44 which is more 
efficient than a direct LU factorization for ] v ( < 4. (Treatment of boundary conditions 
is discussed in [4].) 

5. ITERATIVE ALGORITHM FOR FP44 

In this section we consider the following iterative algorithm for FP44, 

1 + 676 + &6A (#+I) - 
/I2 

u”) = G” - -p3&d&‘” - u”), (5.la) 

and u(O) is some initial guess; usually v(O) = ~7. Observe that the coefficient matrix in 
(5.la) is block tridiagonal and is identical in structure to that of CN24, except that it 
is computed at the state v^ rather than at Y”. This coefficnet matrix is always regular 
(see [4, Appendix A) and one can use a direct LU factorization without pivoting. 

To study the convergence properties of this algorithm we do a Fourier analysis of 
the periodic scalar constant coefficient case. 

1 + d2/6 + -$6 (#+I) - u”) = G” - & ($)’ (u(~) - un), (5.2a) 

G” = -vpdv”, (5.2b) 

v = fi is the CFL number (1.3). Substituting vj”’ = vk)eii’, V” = V”e”’ (here < = 1Ax 
and 1 is the wave number) into (5.2) we obtain 

( 
1 --f Y++isin< (pk+‘)- 

1 
P) = Y(G”) + G Y(l - Y)(vk’ - Yn), (5.3a) 

P(G”) = -iv sin < . V. (5.3b) 

Thus, the algorithm (5.1) is convergent if and only if 

(see [8, pp. 61-641); Y = sin’(r/2), 0 < Y < 1. 
]M(<, v)] obtains its maximal value 0.5 < Y < 0.58 1. The following table shows the 

maximal value of ] M] as a function of ( v] . 
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II IV/ 
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0 1 2 3 4 5 6 
(5.3d) 

max(M] 0 0.10 0.29 0.46 0.63 0.80 0.97 

Thus, algorithm (5.1) is convergent for Iv] < 6. 
In the following we consider the algorithm (5.1) with the initial guess 

u(O) = ; = vn - @if n + ; ,&I”@- “, (5.4a) 

i.e., v(O) = v” is computed by the Lax-Wendroff scheme. In this case vu) for k > 1 is a 
fourth order accurate approximation to (1.1) as the term 

The amplification factor S(I) associated with the first iteration v(‘) is given by 

$I’= 1 - f Y - i(v/2) sin r + (v2/3) Y( 1 - Y)($ - 1) 
1 - ) Y + i(v/2) sin r 

2 (5.4b) 

where 9 is the amplification factor of the Lax-Wendroff scheme in (5.4a), i.e., 

S = 1 - iv sin < - 2v*Y. (5.4c) 

The absolute value of S”’ is given by 

1 - v2Y(1 - Y)[(v’ - 1) Y + l] 
(1 -+Y)*+ v2Y(1 - Y) * 

(5.4d) 

It is easily seen that ] S”’ ( < 1 for ] v ] < 3; thus, the first iteration by itself constitutes 
a stable fourth order accurate scheme which is dissipative of order 6. For Iv] > { the 
first iteration is fourth order accurate but unstable by itself and we have to continue 
iterating in order to stabilize the algorithm. 

In the following table we list k, the number of iterations needed per time-step, as a 
function of the CFL number. The data in this table is based on several scalar periodic 
variable coefficient and nonlinear test problems. 
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IVI 

1 1.5 2 3 4 
(5.5) 

k 1 1 2 3 7 

We find that (5.1) is about 

7k-5 
1+- 

7m+5 

times more expensive than CN24, where m is the dimension of A in (1.2); e.g., for 
m = 3 this factor is 1.35 and 1.62 for k = 2 and k = 3, respectively. 

6. TWO-DATUM REPRESENTATION OF FP44 

In this section we describe a two-datum representation of FP44. We introduce an 
additional auxiliary dependent variable p 

P = ~rwx (6.la) 

and a new state vector 

w= p ; 
( 1 V 

(6.lb) 

(Observe that p = -@t/12) v,). 
We now rewrite FP44 as the following system of two equations in p and v 

TD44: (1 + a2/6)pn+’ - +y(v”’ ‘> = 0, (6.2a) 

V “+’ + 6pn+l + k/&4” + ‘pn+ ‘) = v” - 6p” + &&I “p”); (6.2b) 

as before I = At/Ax. 
The first equation, (6.2a), is the fourth order Pade spatial discretization (2.3b); the 

second equation, (6.2b), is the fourth order temporal discretization (2.7b). We denote 
the scheme (6.2a)-(6.2b) by TD44. Multiplying (6.2b) by the finite difference 
operator (1 + d2/6) and then substituting (1 + d2/6)pk, k = n and k = n + 1, from 
(6.2a), we see that TD44 is identical to FP44 in the constant coefficient case. TD44 
differs from FP44 in the variable coefficient and the nonlinear case in terms 
containing derivatives of A, which are of the order of the truncation error (in the 
same way that the two-step schemes of Richtmyer and MacCormack differ from the 
Lax-Wendroff scheme). 
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We linearize TD44 in exactly the same way as in (2.9): let ~7 be a second order 
accurate approximation to u”+l, i.e., 

then 

and (6.2) becomes 

where 

fi=yt1 
+ w43> 

f n+’ =p+ A(#+’ - fi) + O((dt)6), 

A n+ l = a + O((Lq3); 

(6.3a) 

(6.3b) 

(6.3~) 

12(1 + #/6)p”+’ + Apdh”+’ = E”, 

u”+’ + 6pn+’ + &3@p”+‘) = H”* 

E” = 443 - a;), 

H” = u” - 6~” + &d(A”p”). 

(6.4a) 

(6.4b) 

(6.4~) 

(6.4d) 

The linearized scheme (6.4) can be written as the following block tridiagonal 
system of equations 

(6.5 1 

It is to be understood that if A is an m x m matrix, then any scalar y in (6.5) should 
be interpreted as y . I,,, x m, where I,,, X m is a unit matrix of dimension m. 

The compact three-point spatial discretization in TD44 makes it possible to 
accommodate boundary conditions with relative ease (see 141). Initial and boundary 
values for p are derivable from corresponding values for u via the definition (6.la) 
and the partial differential equation (1.1). 

Perhaps the most attractive feature of TD44 is its algorithmic simplicity: only H” 
has to be computed by (6.4d). For all n > 1 we compute H” by 

H”zH”-‘-- 12p”. (6.6a) 
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This recursive relation, (6.6a), follows from (6.4b), (6.4d) and the observation 

Apus@p”“) = Apd(An+‘pn+‘) + O((LqS). 

We have already mentioned that v” = vnt ’ + O((dt)3) need not be obtained 
stable approximation. A convenient way to compute v^ is given by 

6 = 5v” + 24~” t 6H”-‘. 

by a 

(6.6b) 

This relation is derived from the Taylor expension 

d=w”tdfbv+!g w;, t 0((~It)~) = v” t 12~” t 6+&4”pn) 

and the substitution &d(A”p”) = H”-’ - vn - 6P” from (6.4b). - - 
We remark that the termf- Av^ in E” (6.4~) should be computed analytically as it 

represents a linearization error and therefore a significant reduction in the operational 
count is to be expected. Some physical systems governed by conservation laws, e.g., 
the Eulerian equations of gas dynamics, have the property that the nonlinear vector 
functionS(v) is a homogeneous function of the components of U. Beam and Warming 
in [ 11 point out that in this case 

f-Au, (6.7) 

where as before A is the Jacobian off with respect to v. It follows from (6.7) that in 
this case E” = 0 for all n. The TD44 algorithm is particularly simple for conservation 
laws with an homogeneous flux (e.g., Eulerian equations of gas dynamics). To 
advance the solution in one time step we execute the following algorithm: 

(i) Calculate 

(ii) Calculate 

H” = H”-’ - l&f’, (6.7a) 

v^ = -5~” + 24~” + 6H”, (6.7b) 

(iii) Evaluate a = A(C), 

(iv) Solve the block tridiagonal system (6.5). 

In such a case A(v) is typically a matrix with easy to compute entries; clearly the 
major part of the-computational effort is to solve the block tridiagonal system of Eq. 
(6.5). 

The blocks in (6.5) are of dimension 2m, twice as large as that of CN24 and 
FP44; however, out of 12 entries in the three coefficient matrices in (6.5), three are 
zero and five are scalar times identity. To take full advantage of this structure as well 
as the structure of the matrix A, it seems advisable to use iterative methods for the 
solution of (6.5). (An accelerated Gauss-Seidel iteration of a two-datum represen- 
tation of CN22 and CN24 is presented in [ 121). 
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7. VARIABLE COEFFICIENT PROBLEMS 

In this section we consider a hyperbolic variable coefficient problem of the form 

w,+A(x)w,=O. (7.1) 

In this case w, = -A(x) We, w,, = A(x) (A(x) w,], , therefore the time discretization 
formula (2.7a) becomes 

W n+l+;A(x)w;+l+ (At>* ,-A(xM4 W:+‘lx 

=w”-$A(x)w:+ TA(x)[A(x) w:lx + O((At)5). 

(7.2a) 

(7.2a) 

To obtain fourth order accuracy in the spatial discretization we approximate the term 
(At/2) A (x) w, in (7.2a) by a modified Padt formula 

1 4pAd-A/d 
A(x) w*=- 

3Ax 1 + 6*/6 w + O((AX)~), (7.2b) 

and just as before it is sufficient to approximate the higher order term 
W)*/WWLW wxl, by 

A(x)[A(x) wxlx = & Apu6Apdw + O((Ax)*). 

Rearranging terms we get the following d-formulation for CN22 (2.6a), CN24 (2.6b) 
and FP44 (4.7b) 

= -+(4jd -A/I)~v", 

where FP44 is given by (x2-., = aa--4 = 1, CN24 is given by a*-., = 1, ad-d = 0 and 
CN22 is given by aze4 = adp4 = 0. 

Next we describe some numerical experiments with the periodic, scalar, variable 
coefficient problem 

1 
wt + 2 + cos x 

w, = 0, -n<x<n, t>o (7.4a) 

with the initial data 

w(x, 0) = 2 + sin(2x + sin x) -n<x<n (7.4b) 
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and the periodic boundary conditions 

w(-77, t) = w(n, t), t >, 0. (7.4c) 

The exact solution to the problem (7.4a)-(7.4c) is 

w(x, t) = 2 + sin(2x + sin x - t). (7.4d) 

In Table I we present a mesh refinement chart for CN22, CN24 and FP44. It 
shows the relative l,-error in sequences of calculations with a fixed CFL number v 

Ax = 2n/N, (7.5) 

in which the number of grid points N and the number of time steps n are successively 
doubled. For comparison we show refinement sequences for v = 1, 2, 4. 

In Table II we show the dependence of the error on the CFL number v in a fixed 

TABLE I 

Mesh Refinement Chart - Variable Coefficient Problem (7.4) 

CFL Time n N CN22 Ratio CN24 Ratio FP44 Ratio 

1. 6.28 20 20 2.07 x 10-l 2.18 x lo-* 7.27 x lo-’ 
3.73 4.70 17.07 

40 40 5.55 x lo-* 4.63 x 10-j 4.26 x 10m4 
3.96 4.17 16.20 

80 80 1.40 x 1o-2 1.11 x 10-l 2.63 x lo-’ 
3.99 4.04 16.13 

160 160 3.52 x 10-j 2.75 x 1O-4 1.63 x 1O-6 

2. 12.57 20 20 4.43 x 10-l 1.40 x 10-l 2.26 x 1O-2 
3.38 3.90 16.62 

40 40 1.31 x 10-I 3.51 x 1om2 1.36 x lo-’ 
3.97 4.00 16.00 

80 80 3.30 x lo-’ 8.77 x 10-j 8.50 x lo-’ 
4.0 1 4.00 16.01 

160 160 8.23 x lo-’ 2.19 x 10-3 5.31 x 10-6 

4. 25.13 20 20 5.05 x 10-l 6.43 x 10-l 1.32 x 10-l 
1.24 2.49 14.68 

40 40 4.06 x.10-l 2.58 x 10-l 8.99 x 10-j 
3.50 3.73 15.72 

80 80 1.16 x 10-l 6.91 x 10m2 5.72 x lo-’ 
3.93 3.95 15.93 

160 160 2.95 x lo-* 1.75 x 10-2 3.59 x loms 
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TABLE II 

Dependence on CFL Number - Variable Coefficient Problem (7.4) 

CFL Time n N CN22 Ratio CN24 Ratio FP44 Ratio 

1. 25.13 320 80 5.29 x 10m2 4.45 x 10-j 8.91 x IO-” 
1.24 3.93 1.91 

2. 25.13 160 80 6.58 x lo-* 1.75 x 10-Z 1.70 x 1o-J 
1.76 3.95 3.36 

4. 25.13 80 80 1.16 x 10-l 6.91 x lo-’ 5.72 x lo-’ 
2.56 3.72 5.94 

8. 25.13 40 80 2.97 x 10-l 2.57 x 10-j 3.40 x lo-’ 

mesh calculation. The relative I,-error used in Tables I, II, and all subsequent tables 
is defined by 

E,(v) = c (Vj - Wj)’ “2 1 cw; ’ (7.6) 

where vi is the numerical solution and wj is the exact solution, 
We make the following observations regarding the data in Tables I and II: 

(1) FP44 is indeed fully fourth order accurate: a refinement by a factor of 2 
reduces the error by a factor of approximately 16 = 24. 

(2) CN22 exhibits a very poor accuracy, even in relatively line meshes (e.g., 
5.6% error with 40 mesh points for sin(2x + sin x), -rc <x < rr, in one period of 
time-oscillation). 

(3) CN24 is considerably more accurate than CN22 for CFL numbers smaller 
or equal to 1 (see 151); however, it is only negligibly more accurate for CFL numbers 
around 4. The 4-4 schemes are always considerably more accurate than CN24, e.g., 
FP44 with n = N = 40 in Table I is as accurate as CN24 with n = N = 160; FP44 
with n = 40, N= 80 and v = 8 in Table II is more accurate than CN24 with n = 320, 
N= 80 and V= 1. 

(4) vz 0.25 seems to be the optimal choice for CN24 (see [S, Ill); v x 2.5 
seems to be the optimal choice for FP44. 

8. NONLINEAR PROBLEMS 

In this section we examine numerical solutions to the nonlinear conservation law 
(1.1). FP44 (4.7b) is linearized around a solution of the one-step Lax-Wendroff 
scheme, i.e., 

(8.1) 
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First, we describe numerical experiments with the following periodic scalar 
problem 

with the initial data 

= 0, -7c<X<71, t,,o (8.2a) 

w(x, 0) = d + sin x, d = const., --7c<X<7T, (8.2b) 

and the periodic boundary conditions 

w(--n, t) = w(71, t), t > 0. (8.2~) 

It is easy to see that for all values of d the solution to (8.2) is smooth up to t = 1, at 
which time a shock wave begins to form. After formation this shock decays at a fast 
rate which is typical of periodic problems (see [4, Appendix B]. 

In Table III we present a mesh refinement chart for numerical solutions of CN22, 

TABLE III 

Mesh Refinement Chart-Nonlinear Problem (8.2) 

CFL Time n N CN22 Ratio 

1. 0.628 12 40 7.92 x 10-l 
3.62 

24 80 2.19 x 10-j 
3.88 

48 160 5.65 x 1O-4 
3.98 

96 320 1.42 x 1O-4 

CN24 Ratio FP44 Ratio 

1.98 x 10m3 4.59 x 1o-4 
4.00 12.57 

4.95 x 1o-4 3.65 x lo-’ 
4.02 15.21 

1.23 x lo-’ 2.40 x 10m6 
3.98 15.89 

3.09 x 1o-5 1.51 x lo-’ 

2. 0.628 6 40 1.18 x lo-* 6.75 x 1O-3 1.14 x 1o-3 
3.41 3.59 9.83 

12 80 3.46 x 10-l 1.88 x 1O-3 1.16 x 10m4 
3.79 3.86 13.68 

24 160 9.15 x 1o-4 4.87 x 1O-4 8.48 x lo-” 
3.93 3.96 15.45 

48 320 2.33 x 1O-4 1.23 x 1O-4 5.49 x lo-’ 

4. 0.628 3 40 2.44 x 10m2 2.07 x lo-* 4.50 x lo-) 
3.05 3.09 7.34 

6 80 8.01 x 10-j 6.70 x 10-j 6.13 x 1O-4 
3.53 3.58 11.54 

12 160 2.27 x 10m3 1.87 x 10-j 5.31 x lo-! 
3.83 3.84 14.79 

24 320 5.93 x 1O-4 4.87 x 1O-4 3.59 x 1o-6 
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CN24 and FP44 to (6.3) with d = 2. The time-step At’“’ in these calculations is 
calculated at each time level by 

At’“’ 
z msx ]A($)] = V, Ax = 2n/N, 

J 

where z$’ is the FP44 solution and v is the fixed CFL number. The 1, errors (7.6) in 
this table correspond to t = 0.628, at which the solution is still smooth. 

Table III shows that FP44 is indeed a fully fourth order accurate scheme. The fact 
that the Lax-Wendroff scheme (8.1) is unstable for (v] > 1 does not seem to effect the 
stability of FP44 for Jv] > 1. The relation between the error of CN22, CN24 and 
FP44 is about the same as in the variable coefficient case (Tables I, II). All the 
schemes in Table III exhibit a deterioration of accuracy with increasing CFL 
numbers which is much stronger than in the variable coefficient case. This is to be 
expected as in the nonlinear case, there is an additional linearization error which 
increases with the CFL number. 

FP44, as well as CN22 and CN24, is a nondissipative scheme and therefore it is 
susceptible to nonlinear instabilities, e.g., CN22, CN24, and FP44, when applied to 
(8.2) with d= 0, develop a strong nonlinear instability after the formation of a 
stationary shock at t = 1 at the boundaries x = fn (see [5] and the references cited 
there). To prevent such occurrences, as well as to improve calculations with shocks, 
we supplement these schemes with an external dissipation mechanism in the form of a 
switched Shuman filter F (see [7]). Let L denote our finite difference scheme (CN22, 
CN24, or FP44 in this case), and let v’= Lu” be the numerical solution at the 
advanced time level. We now consider the dissipative scheme 

I 
u’ = Lv” tltl=Fv” Or ’ u 

‘+I =,%“s (FL) o”, 

where 

(8.4b) 

19 is an automatic switch, 0 < 0 < 1. Observe that when 19,+ ,,* = 1 and a = 1, F is the 
averaging operator, F =,u’, ,D = f(r-‘I’ + T”*). Fourier analysis of (8.4b) under the 
assumption Bj+ ,,* = 6’= const, 0 < 19 < 1, shows that l/F/12 < 1 for 0 < a < 2. Thus, if 
L is stable so is z. 

We apply (8.4) with the following automatic switch B 

(8Sa) 

where 6 = Tif2 - T-l/*, ] 6 ] = T”’ + T- ‘I* = 2,u, d = T - I and ~$3 is some function 
of U: It follows immediately from its definition that 

O<Bj+,,2< 1, (8.5b) 
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and that 

Oj+ l/*(V;.+ 1 - v;.) = O((Ax)k+ ‘) (8.5~) 

wherever v’ is sufficiently smooth. Hence, choosing k = R in (8.5), where R is the 
order of accuracy of L, guarantees that 2 (8.4) has the same formal order of 
accuracy as L. We demonstrate this point in Table IV by repeating the calculations 
in Table III using J? rather than L, with k = 2 for CN22 and k = 4 for CN24 and 
FP44; (x = 1 and u(u) s v in (8.4)-(8.5). 

We turn now to describe the performance of CN22, CN24 and FP44 in calculating 
solutions with shocks. We observe that these schemes are in conservation form (see 
[lo]). This is self evident from the fact that all the terms in (2.6a)-(2.6b) and (4.7b), 
except for Au”, have a 6 operator in front of them (note that ,&I = 6~). The switched 
Shuman filter F in (8.4) is also in conservation form (see [7]). The conservation form 
is of particular significance in computing shocks as it guarantees correct propagation 
of shock fronts (see [lo]). 

In Figs. l-4 we show solutions of CN22, CN24, and FP44 to the periodic problem 
(8.2) with d = 2. Figure 1 shows the results after 80 time-steps with v = 1 and N = 40 

TABLE IV 

Mesh Refinement Chart-Nonlinear Problem (8.2) with Shuman Filter 

CFL Time n N CN22 Ratio CN24 Ratio FP44 Ratio 

1. 0.628 10 40 8.39 x 10-j 2.11 x 10-j 6.91 x lO-4 
3.65 4.20 12.00 

24 80 2.30 x 1O-3 5.02 x lo-4 5.76 x lO-5 
3.95 4.05 17.56 

48 160 5.83 x lO-4 1.24 x lO-4 3.28 x lO-6 
4.02 4.01 18.02 

96 320 1.45 x lO-4 3.09 x 1o-5 1.82 x IO-’ 

2. 0.628 6 40 1.20 x lo-’ 6.80 x 10-j 1.25 x lo-’ 
3.43 3.62 10.08 

12 80 3.50 x 1O-3 1.88 x 10-j 1.24 x lO-3 
3.79 3.86 14.03 

24 160 9.23 x 1O-4 4.87 x 1O-4 8.84 x lo-’ 
3.94 3.96 15.79 

48 320 2.34 x 1O-4 1.23 x lO-4 5.0 x lo-6 

4. 0.628 3 40 2.44 x lO-2 2.07 x lO-2 4.54 x lo-3 
3.04 3.09 7.37 

6 80 8.03 x 1O-3 6.70 x lO-3 6.16 x 1o-4 
3.54 3.58 11.56 

12 160 2.27 x lo-’ 1.87 x 1O-3 5.33 x lo-! 
3.83 3.84 14.85 

24 320 5.93 x 10m4 4.87 x lO-3 3.59 x lo-6 
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FIG. 1. Solutions to (8.2) for Y = 1 and no filtering (f = 3.80, n = 80). 
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in (8.3). The solutions in Fig. 1 are oscillating to the point of being meaningless. In 
Fig. 2 we repeat this calculation with 2 where a = 2 and U(U) = u in (8.4~(8.5). The 
solutions of CN24 and FP44 are now rather accurate but the solution of CN22 is 
still oscillating. In Figs. 3 and 4 we demonstrate that when shocks are present there is 
no sense in going to CFL numbers much larger than 1. In Fig. 3 we repeat the 
calculation of Fig. 2 with 40 time-steps and v = 2. Figure 4 shows the results with 20 
time-steps and v = 4; here we have to apply the switched Shuman filter twice at each 
time-step, i.e., L’= F*L, as well as to filter i? in @Xl), to obtain stable results for 
FP44. 

Next we describe numerical experiments with the following Riemann problem 
(shock tube) for the Eulerian equation of a polytropic gas: 

(8.6a) 

P = (y - l)(E - &u2), (8.6b) 

Here p, U, P and E are the density, velocity, pressure and total energy, respectively; 
m =pu is the momentum, y = 1.4. The exact solution of this Riemann problem 
consists of a shock propagating to the right followed by a contact discontinuity, and 
a left propagating rarefaction wave. This exact solution is shown in Figs, 5 and 6 by 
a continuous line. 

The flux f(w) in (8.6a) is a homogeneous function of the components of w, i.e., 
f(w) z A w. The linearization (2.9) becomes 

f”” =3+ A(#+ ‘ - q + O((dty) = Au*+’ + O((dty). (8.7) 

Figure 5 shows the solution of (8.6) with the 4-4 scheme 

1 + a*/6 + $%i u”+’ = (1 + 6*/6) U” -+.&y + -$-pS@‘af” -&j) (8.8a) 

with 

v^ = v” - &dfn + ; 6Andf “. (8.8b) 

This scheme is a simplified form of (5.la) with k = 1 and G(O) given by the Lax-Wen- 
droff scheme (5.4a). We saw in Section 5 that (8.8) is stable and dissipative for 
[VI < 1.5. Fig. 5 shows the solution of the Riemann problem (8.6) for 50 time-steps 
under the restriction Iv/ ,< 1, obtained by the scheme (8.8). At the end of each time- 
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step, the numerical solution is filtered by applying (8.4b) with a = 1 and u(u) = p, 
k=4 in (8Sa). 

For comparison we show in Fig. 6 the same calculation with CN24, except that 
here we take a = 2 in the Shuman filter to account for the nondissiptivity of CN24. 

We conclude that CN22, CN24 and FP44 with Shuman filtering can handle 
shocks, provided that the CFL number is not much larger than 1. Hybridization 
techniques (see [6]) may produce better results for higher CFL numbers. 
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